MSstatsQC.ML.sim.size.detectR.RdA function to train random forest classifiers for QC data
MSstatsQC.ML.sim.size.detectR(guide.set, sim.start, sim.end)a plot for sim.size vs performance
# First process the data to make sure it's ready to use
S9Site54.dataML <- DataProcess(MSstatsQC::S9Site54[, ])
#> Your data is ready to go!
colnames(S9Site54.dataML)[1] <- c("idfile")
colnames(S9Site54.dataML)[2] <- c("peptide")
S9Site54.dataML$peptide <- as.factor(S9Site54.dataML$peptide)
S9Site54.dataML$idfile <- as.numeric(S9Site54.dataML$idfile)
S9Site54.dataML <- within(S9Site54.dataML, rm(Annotations, missing))
guide.set <- dplyr::filter(S9Site54.dataML, idfile <= 20)
# \donttest{
MSstatsQC.ML.sim.size.detectR(guide.set, sim.start = 10, sim.end = 2500)
#> creating full factorial with 32 runs ...
#> creating full factorial with 32 runs ...
#> Error in QcClassifier_data_var(guide.set, nmetric, factor.names, sim.size * 1, peptide.colname, L = a, U = b): object 'guide.set' not found
# }